High-definition NMR structure of PED/PEA-15 death effector domain reveals details of key polar side chain interactions.

نویسندگان

  • Edward C Twomey
  • Yufeng Wei
چکیده

Death effector domain (DED) proteins constitute a subfamily of the large death domain superfamily that is primarily involved in apoptosis pathways. DED structures have characteristic side chain-side chain interactions among polar residues on the protein surface, forming a network of hydrogen bonds and salt bridges. The polar interaction network is functionally important in promoting protein-protein interactions by maintaining optimal side chain orientations. We have refined the solution DED structure of the PED/PEA-15 protein, a representative member of DED subfamily, using traditional NMR restraints with the addition of residual dipolar coupling (RDC) restraints from two independent alignment media, and employed the explicit solvent refinement protocol. The newly refined DED structure of PED/PEA-15 possesses higher structural quality as indicated by WHAT IF Z-scores, with most significant improvement in the backbone conformation normality quality factor. This higher quality DED structure of PED/PEA-15 leads to the identification of a number of key polar side chain interactions, which are not typically observed in NMR protein structures. The elucidation of polar side chain interactions is a key step towards the understanding of protein-protein interactions involving the death domain superfamily. The NMR structures with extensive details of protein structural features are thereby termed high-definition (HD) NMR structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profound conformational changes of PED/PEA-15 in ERK2 complex revealed by NMR backbone dynamics.

PED/PEA-15 is a small, non-catalytic, DED containing protein that is widely expressed in different tissues and highly conserved among mammals. PED/PEA-15 has been found to interact with several protein targets in various pathways, including FADD and procaspase-8 (apoptosis), ERK1/2 (cell cycle entry), and PLD1/2 (diabetes). In this research, we have studied the PED/PEA-15 in a complex with ERK2...

متن کامل

Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK

ERK1/2 kinases are the principal effectors of a central signalling cascade that converts extracellular stimuli into cell proliferation and migration responses and, when deregulated, can promote cell oncogenic transformation. The scaffolding protein PEA-15 is a death effector domain protein that directly interacts with ERK1/2 and affects ERK1/2 subcellular localization and phosphorylation. Here,...

متن کامل

Substantial Conformational Change Mediated by Charge-Triad Residues of the Death Effector Domain in Protein-Protein Interactions

Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs) mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC) data, we report a conformational change in the DED of the ...

متن کامل

Absence of Caspase 8 and High Expression of PED Protect Primitive Neural Cells from Cell Death

The mechanisms that control neural stem and progenitor cell survival are unknown. In several pathological conditions, death receptor (DR) ligands and inflammatory cytokines exert a deleterious effect on neurons, whereas primitive neural cells migrate and survive in the site of lesion. Here, we show that even in the presence of inflammatory cytokines, DRs are unable to generate death signals in ...

متن کامل

Perspectives Frontiers: PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism

Fiory F, Formisano P, Perruolo G, Beguinot F. PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism. Am J Physiol Endocrinol Metab 297: E592–E601, 2009. First published June 16, 2009; doi:10.1152/ajpendo.00228.2009.—PED/ PEA-15 is a 15-kDa ubiquitously expressed protein implicated in a number of fundamental cellular functions, including apoptosis, proliferation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 424 1  شماره 

صفحات  -

تاریخ انتشار 2012